Evaluating Location Compliance Approaches for Automated Road Vehicles

Alexander Zhu, Stefanie Manzinger, and Matthias Althoff Technische Universität München

Problem Statement

Definition of Location Compliance: A vehicle is location compliant iff its occupancy \mathcal{E} is in the allowed region \mathcal{A} :

 $\mathcal{E} \subseteq \mathcal{A} \Leftrightarrow \mathcal{E} \cap \mathcal{A}^C = \emptyset.$

Problem Statement: Automated road vehicles should be prevented from leaving the boundaries of the road. We refer to **location compliance** as an allowed translational and rotational positioning of the vehicle on a two dimensional road map composed of lanelets.

Enclosure checking: Is the blue vehicle enclosed in the red allowed region? ($\mathcal{E} \subseteq \mathcal{A}$?)

Boundary collision approach: Does the blue vehicle collide with the orange forbidden region? $(\mathcal{E} \cap \mathcal{A}^C = \emptyset$?)

Boundary Collision

In order to determine location compliance with collision detection, we need to construct the *forbidden* region \mathcal{A}^{C} .

We examine the following approaches for obtaining \mathcal{A}^C :

Main Results

- We propose various approaches to determine location compliance *automatically from maps composed of lanelets*.
- **Precision:** Currently used approaches approximate the road boundary with rectangles. However, our triangulation and enclosure approaches model \mathcal{A} exactly.

Quadtree: The map is divided in a recursive quadtree algorithm. This approach is simple, but there are inaccuracies around the road border, due to the use of axis-aligned rectangles. Shell Approach: Oriented rectangles are constructed around the driveable area. There are fewer inaccuracies, as the obstacles are aligned with the curvature of the road.

Triangulation: The forbidden area is expressed with a triangle mesh, which is obtained by performing Constrained Delaunay Triangulation (CDT). There are no inherent inaccuracies in this representation.

Enclosure Checking

- **Polygon model:** The allowed area \mathcal{A} is modeled with a set of polygons $\mathcal{L} = \bigcup_i \mathcal{L}_i$.
- For an efficient computation, there should be few polygons in L and each polygon L_i should have a low number of points. We examine two choices for polygon representations:

• Efficient computation: From our measurements, the *triangulation* is the most efficient of the collision methods. The *polygon enclosure with lane sections* is slightly faster compared to it, but further work on comparing them should be done.

Method	GER B471	GER Ffb 2	GER Muc1a	NGSIM US101
Quadtree Shell Trian- gulation	1.80 1.24 0.31	0.75 0.29 0.10	4.52 5.38 0.85	1.13 0.19 0.23
Lanelets	0.29	0.15	1.04	0.36
sections	0.23	0.08	0.73	0.11

 Computation times in seconds for 10,000 location compliance checks with random vehicle poses.

The road map, which is composed of **lanelets**, is expressed as a polygon \mathcal{L}_i . Laterally adjacent lanelets are combined to so-called **lane sections**, which each correspond to a single polygon.

• Location compliance can be checked with polygon difference:

 $\mathcal{E}\subseteq\mathcal{L}\Leftrightarrow\mathcal{E}\setminus\mathcal{L}=\emptyset$

- At the top are the boundary collision approaches and at the bottom are the enclosure methods.
- We compare the results on three maps from the Commonroad project and one made for the purpose of this study (GER B471).

commonroad.in.tum.de

{alexander.zhu, stefanie.manzinger, althoff}@tum.de We gratefully acknowledge partial financial support by the Deutsche Forschungsgemeinschaft (German Research Foundation) within the Priority Program SPP 1835 "Cooperative Interacting Automobiles" (grant number: AL 1185/4-1) and the European Commission project interACT under grant number 723395.

