interACT Scenarios: Selection & Implementation

Ruth Madigan
r.madigan@leeds.ac.uk
University of Leeds
ISO Meeting, 08.10.2019
Project Consortium

UNIVERSITY OF LEEDS

DLR
Deutsches Zentrum für Luft- und Raumfahrt
German Aerospace Center

BMW

BOSCH
Invented for life

Technical University of Munich

HELLE

CRF

ENIΣΕΥ
ICCS
The challenge

Achieve a safe, highly accepted and efficient integration of Automated Vehicles in mixed traffic environment

1st Enabler
Psychological models

2nd Enabler
Intention recognition & behavioural predictions

3rd Enabler
CCPU & safety layer

4th Enabler
Novel HMI elements

5th Enabler
Methodology for assessing the quality of interaction

interACT / ISO Meeting/ 08.10.2018
Purpose of Presentation

• Overview of initial interACT scenario selection process:
 – Definition of terms
 – Description of selected use cases

• Implementation and adaptation process:
 – Evaluation of current traffic interactions
 – Specification of scenario details for implementation within AV systems

• Plans for evaluation of AV – human interactions within selected scenarios
Scene:
- Provides a snapshot of the environment:
 - Scenery (Lane network, stationary elements, traffic lights, obstacles);
 - Dynamic elements (cars, road users);
 - Lasts only a few seconds
Scenario:
• Temporal development between several scenes;
• A sequence of scenes connected by actions & events;
• Includes goals of the agents;
• Spans a longer amount of time
Use Case:
- Functional description for a technical system (AV) & its behaviour for a specific usage
- E.g. the AV has to pass a zebra crossing safely;
- Specification of system boundaries;
- Definition of one or several scenarios;
- Not as specific as the scenario or scene descriptions
Template for Use Case Description

<table>
<thead>
<tr>
<th>Attributes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Addressed interaction partner(s)</td>
<td>Vehicle driver, Cyclist, Pedestrian</td>
</tr>
<tr>
<td>Right of way</td>
<td>AV, Human road user, Undefined</td>
</tr>
<tr>
<td>Driving direction AV</td>
<td>Driving forward, Reverse</td>
</tr>
<tr>
<td>Possible perspectives of the interaction (from the perspective of the AV)</td>
<td>Ahead, Sideways / Diagonal, Backward</td>
</tr>
</tbody>
</table>
Sequence Diagrams

Selection of Use Cases

• Brainstorming workshop
• Criteria:
 – Relevance for safety
 – Frequency of occurrence
 – Relevance for traffic flow
 – Need for interaction with human road users
 – Effects on user acceptance
 – Realization in demo vehicles
 – Realization in simulators
Selected Use Cases

interACT use cases

Interaction with non-motorised TP (pedestrians & bicyclists)
- React to crossing non-motorised TP.
 - at crossings without traffic lights
 - at signalised crossings
 - while jaywalking
- React to non-motorised TP in specific zones.
 - in a pedestrian zones
 - on a walkway
 - at parking space

Interaction with vehicles (incl. bicyclists) on the road
- React to ambiguous situation (on the road).
 - at unsignalised intersection
 - at an intersection with a blocked lane
 - at a bottleneck road
- React to vehicles (on the road).
 - in merging situations
 - in turning situations
 - in parking situations
React to crossing non-motorised TP at crossings without traffic lights

React to an ambiguous situation at an unsignalised intersection

React to non-motorised TP at a parking space

React to vehicles at a parking space
The challenge

Achieve a safe, highly accepted and efficient integration of Automated Vehicles in mixed traffic environment

1st Enabler
Psychological models

2nd Enabler
Intention recognition & behavioural predictions

3rd Enabler
CCPU & safety layer

4th Enabler
Novel HMI elements

5th Enabler
Methodology for assessing the quality of interaction

interACT / ISO Meeting/ 08.10.2018
Use Case Implementation: Current traffic interactions

- Purpose of research:
 - Understanding and modelling current traffic to help identify interaction-demanding situations and how traffic participants resolve them using currently available means of communication
Use Case Implementation: Current traffic interactions

• Methods:
 – Naturalistic observations using protocols
 – Video data
 – LiDAR
 – Questionnaires
 – Commentary driving

• Overall results:
 – Few examples of explicit communication in use cases 1 and 2
 – More common in slow-moving situations captured in use cases 3 and 4

Adaptation & Specification of Use Cases for AV studies

• Providing a greater level of detail on the scenarios to enable the interACT AV’s Coordination and Communication Planning Unit (CCPU) to evaluate how to progress

• For example in Use Case 1, the specification of different pedestrian behaviors, leading to:
 – **Scenario 1:** Pedestrian waiting for the vehicle to show action
 – **Scenario 2:** Pedestrian crossing the road and
 – **Scenario 3:** Pedestrian attempting to cross, but then noticing the AV and giving way to it (implicitly, e.g. stepping back, or explicitly, e.g. waving).

Implementation of Scenarios

• Evaluating the interACT final solutions through:
 – Simulator based studies (Leeds, DLR)
 – Test-track studies / parking lot studies (CRF, BMW, ICCS, Leeds, TUM)
 – On-road studies (BMW and TUM)

Capturing AV – Pedestrian Interactions (1)

• DLR: Simulator Studies:
• Comparison of pedestrians crossing behaviours in response to an AV with an eHMI, conventional vehicles, and AVs without an eHMI. Measures include:
 – Crossing decision point
 – Checking behaviour
 – Perceived certainty
 – Perceived safety

for information on HMI design see: https://www.interact-roadautomation.eu/wp-content/uploads/interACT_WP4_D4.2_Final_Human_Vehicle_Interaction_Strategies_v1.1_uploadWebsiteApproved.pdf
Capturing AV – Pedestrian Interactions (2)

• ITS Leeds, Cave Based Studies:
 – Evaluation of the effects of the interACT eHMI solutions on pedestrians’ crossing decisions and behaviour
 – Effect of congruent and incongruent eHMI on pedestrians’ crossing behaviour,
 – Effect of different speeds, deceleration rates, and deceleration onsets on crossing behaviour.

• Investigation of the interaction between drivers and pedestrians in real time at junctions
 – connecting HIKER with driving simulator
Capturing AV – Vehicle Interactions (1)

- Evaluation of interACT communication solutions (simulator study, DLR)
- Are there **learning effects** when drivers interact with a self driving vehicle with an external HMI?
 - Without signal, when it is braking, or braking with HMI
 - With small, medium or large gap size
 - When encountering different situations
- Does the driver
 - Turn earlier or more frequently?
 - Turn smoother?
 - Understand the intention of the automated vehicle better?
 - Accept smaller gaps?
Capturing AV – Vehicle Interactions (2))

• Test Track study (ICCS)
• AVs interactions with other drivers in no priority situations at urban intersections (AV yielding to a human driver in a left turn manoeuvre)

• Objective:
 – Study driver’s interaction with an AV compared to an interaction with a conventional vehicle during a left turn
 – Study impact of eHMI on driver’s interaction
Application of Scenarios using Demonstrator Vehicles (1)

- BMW Demonstrator
- Wizard-of-oz study to investigate three main research questions:
 1. Do Pedestrians understand the vehicle’s intention, as conveyed through the eHMIs?
 - Learnability: Is there a behavioural adaptation/adaptation of mental models from the first compared to following encounters?
 - Compliance: If the vehicle intention is understood, would pedestrians also act as intended?
 2. Does the usage of eHMIs lead to faster crossing decisions?
 - Efficiency: Faster intention recognition of the AV and faster crossing initiation?
 3. How does the eHMI influence pedestrians’ perception of AVs?
 - Perceived Safety
 - Technology Acceptance
 - Trust in Automation

interACT / ISO Meeting/ 08.10.2018
Application of Scenarios using Demonstrator Vehicles (2)

- CRF Demonstrator
- Vehicle can travel autonomously in this dedicated area at a maximum speed of 15-20 km/h
- Focus on the parking area scenario. Evaluation of interaction with pedestrian moving within this space:
 - Crossing Decisions
 - Visibility of eHMI
 - Perception of vehicle movement
 - Understanding of AV communication
Conclusions and Lessons Learned (1)

• Helpful to agree to common use cases, documentation methods, and terminology at the beginning of a project
 – Influences all technical and research related work
 – Improves communication between WPs

• Higher complexity in observational studies needs to be reduced to lower complexity for experimental participant studies
 – Complexity increased again for real world studies
Conclusions and Lessons Learned

- Useful to differentiate between slow moving scenarios (e.g. shared space / parking lot) vs. urban scenarios
 - More examples of explicit interactions in slow moving scenarios
 - However, eHMI requirements similar
- Cross-cultural variations in traffic scenarios
- Important to agree on standardized scenarios including AV movements e.g. gap size, deceleration rate, to compare eHMI in standardized way in simulator and test track studies
 - Allows the comparison of data assessed at different test sites
interACT Final Event

1 April 2020
BMW Test Track Maisach, Munich, Germany

Designing cooperative interaction of automated vehicles with other road users in mixed traffic

Learn more about the interACT projects results and experience our vehicle demonstrators in live demonstrations.

www.interact-roadautomation.eu
Thank you

Any questions?

http://interact-roadautomation.eu