

Automated vehicles in mixed traffic environments The interACT Project

Anna Schieben Institute of Transportation Systems, DLR e.V. ISO Meeting, 18.10.2018

Integrating automated vehicles in mixed traffic

interACT project facts

interACT – Designing cooperative interaction of automated vehicles with other road users in mixed traffic environments

Programme: EU/H2020-ART04 - Safety and end-user acceptance aspects of road automation in the transition period Period: May 2017 – April 2020 Deutsches Zentrum für Luft- und Raumfahrt rman Aerospace Cente **EU Funding**: 5.527.581 € UNIVERSITY OF LEEDS OSCH Coordinator: Anna Schieben, DLR e.V. HELLA Partners: 8 industrial and academic partners from University of Munich 4 European countries (Germany, Italy, Greece, UK) **EU twinning project**: AVIntent (NHTSA) MIZE www.interact-roadautomation.eu 1005 interACT meeting/event title, Venue

6

OBSERVATIONAL STUDIES

Objectives of the studies

- Observe human-human interactions in current complex urban environments
- Model interaction using different approaches
 - Interaction vocabulary: How do TPs communicate and anticipate intent
 - Interaction sequences: What is the general interaction process in specific use cases, scenarios and scenes?
 - Quantitative models: How can interactions be mathematically formulated to allow model in the loop simulations?
- Develop real-time situation and intention analysis algorithms based on the interaction models

Observe, Model, Predict

Methodology

- 3 Countries: Greece, UK, Germany
- 4 urban use cases

Data assessment

- Videos
- Observation Protocols
- Questionnaires
- Lidar

Observation sites

Preliminary Results – Manual Observation

- Over 100 Protocols per use case and country
- Also: combined 100+ hours of videos, 20+ hours of LiDAR Data and 150+ people interviewed

Interaction vocabulary

Fraffic Participant	type of physical signifier	Sign type (physical signifier)	examples
Car/Driver	Driver's behaviour	Hand gesture	e.g. move hand sideways, show palm
		Head Nodding	e.g. sideways, downwards,
		Eye-contact	e.g. with pedestrian, with other driver
	Car	Car movement	e.g. accelerate, kept pace, Stopped, turned
		Car positioning	e.g. protruding on intersection, keeps left/right
		Engine noise	e.g. rev-up the engine on idle
	Car HMI	Turn indicator	Left / right
		Headlights flashing	
		Horn	e.g. one long press, one momentary, two
		Alarm indicator	
Pedestrian	Pedestrian's body	Hand gesture	e.g. raised hand, extending palm, waving
		Head Nodding	e.g. sideways, downwards,
		Eye-contact (with car driver)	
		Gaze towards car (when it is clear that the pedestrian has seen the car)	
		Head/body orientation (combined since semantically they form a whole)	e.g. facing car, facing sideways,
		Body movement	e.g. walking parallel towards car, hesitating, accelerating,

Preliminary Results – Manual Observation

"Interaction Sequence" - Intersection – pedestrian goes first:

Driver-driver interaction

Figure 37: Sequences of observed signals/cues in interactions between drivers relevant to left turns

Overall findings

- The occurrence and necessity of interactions depends on the situation and a variety of **other factors**, such as traffic density, time of day and specific traffic conditions
- Explicit communication (e.g. gesturing, flashing lights etc.) happens rarely most potential interaction-demanding situations are resolved before they actually arise, mostly by adjusting *kinematic motion*
- Cooperation, communication and thus interaction between human road users takes place at low speeds
- At **higher speeds, conflict avoidance** is predominant pedestrians use large enough inter-vehicle gaps to cross without expecting the second vehicle to adapt

Some (preliminary) conclusions

- The use of "external Human Machine Interfaces" is only relevant in **ambiguous situations**, when explicit communication is necessary above and beyond *kinematic cues*
- BUT Unlike manually driven vehicles, in addition to adapting their movement, perhaps Automated Vehicles could enhance acceptance, safety and traffic flow by communicating to other traffic participants earlier.

HMI Design

interACT /ISO meeting, 18/10/2018, Milano

16

Design considerations for automated vehicles

Which information could be needed by other road users?

- Category A: Vehicle driving mode
 - Automated or manually driven vehicle
- Category B: Vehicle's next manoeuvres
 - E.g. Vehicle will start moving
- Category C: Perception of environment
 - E.g. pedestrian is detected
- Category D: Cooperation capability
 - E.g. Vehicle willing to cooperate, gives right of way

Cited from *Schieben, Wilbrink, Kettwich, Madigan, Louw & Merat* (2018): Designing the interaction of automated vehicles with other traffic participants: Design considerations based on human needs and expectations. Cognition, Technology and Work. pp 1-17. <u>https://doi.org/10.1007/s10111-018-0521-z</u>

Design options

Design of infrastructure

• Separated tracks, signs

Design of vehicle shape

• e.g. Google car

Design of vehicle movements

• e.g. approaching behaviour

Design of external HMI

• Visual, acoustic signals

Interaction strategies: Perception-signaling design

Interaction strategies: Intention-signaling design

Further project information

21

www.interact-roadautomation.eu

Twitter: <u>@interACT_EU</u>

Deliverables: https://www.interact-roadautomation.eu/projects-deliverables/

Webinar Results Observational studies:

https://www.interact-roadautomation.eu/cad-webinar-series-ix-interact-project/ https://www.youtube.com/watch?v=in4eTz1f5Fc&feature=youtu.be

Webinar Technical Approach:

<u>https://www.interact-roadautomation.eu/cad-webinar-series-xii-designing-cooperating-interactions-of-avs-with-other-road-users-interact-project/</u> https://www.youtube.com/watch?v=Xy2soHjSAxY&t=11s

Thank you

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723395