

Towards pedestrian-AV interaction: method for elucidating pedestrian preferences*

Fanta Camara^{1, 2}, Serhan Cosar², Nicola Bellotto², Natasha Merat¹ and Charles W. Fox ^{1, 2, 3}

1 Institute for Transport Studies, University of Leeds, UK ² Lincoln Centre for Autonomous Systems, University of Lincoln, UK 3 Ibex Automation Ltd, UK

3D Velodyne LIDAR data

Human Experiment

• 18 participants by pair of 2 played the **Sequential Chicken Game**

 Track players' motion with a 3D LIDAR • Filter and discretize obtained trajectories • Compute the optimal solution using **Gaussian Process Regression**

Optimal solution for this experiment

Main References:

- 1. Fox et al.: When should the chicken cross the road?: Game theory for autonomous vehicle human interactions. VEHITS 2018
- 2. Camara et al.: Empirical game theory of pedestrian interaction for autonomous Vehicles. Measuring Behavior 2018
- Bellotto & Hu: Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian Filters. Autonomous Robots 2010
- 4. Yan et al.: Online learning for human classification in 3d lidar-based tracking. IROS 2017

* This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreements No 723395 (InterACT) and No 645376 (FLOBOT)