Braking vs. Flashing Lights – Utilizing a Ground Based LiDAR to Observe Urban Traffic

André Dietrich¹, Johannes Ruenz²

¹Chair of Ergonomics, Technical University of Munich
²Chassis Systems Control, Robert Bosch GmbH

IEA 2018
Florence, 29 January 2018
Introduction

Assumption:
- Automated Vehicles (AVs) will be introduced onto urban traffic (at some point)
- Even though there is a trend towards shared mobility, conventionally looking, personally owned cars with automation features (SAE3+) will exist
- Human road users have a learned expectation towards traffic – there are human-like elements in current traffic

Understanding current traffic is key for developing automated vehicles with human-like behavior
Braking vs. Flashing Lights

Traffic on priority lane

Traffic on road w/o priority

action, reaction, interaction

Congestion

André Dietrich | Observing Urban Traffic | 29.08.2018 IEA 2018 Florence
Braking vs. Flashing Lights

- V_green \sim 50 \text{ km/h}

- Normally, yellow cars would turn, once intervehicle gaps become sufficient
Braking vs. Flashing Lights

- If a **congestion** builds up behind the intersection, the **mean velocity** on the main road gets **lower** and drivers start to **cooperate**

Questions:
- What is the **velocity threshold** for drivers yielding their right of way?
- What effect does the **headline flashing** have on the merging process?
Observing Traffic

Understanding current traffic is key for developing automated vehicles with human-like behavior

But how?
- Drive around a lot
- Observe a lot of others driving around
Traffic behavior consists of:

- **Personal** perception and interpretation of **individual** traffic situations

- **Communication and interaction** between road users

- **Kinematic movements** of traffic participants
Observing Traffic – Methods

- **Personal** perception and interpretation of *individual* traffic situations

 - Questionnaires & Interviews
 - Field experiments (e.g. using eye tracking and/or think aloud methods)

- Understanding subjective influences requires **controlled experiments**

 (Portouli et al., 2019)
Observing Traffic – Methods

- Communication and interaction between road users

Currently traffic participants use visual and auditory signals to communicate

- Questionnaires & Interviews (e.g. Merat et al. 2018)
- Manual Observations (e.g. Imbsweiler et al. 2017, Vollrath et al. 2016)
- Videos (e.g. Rasouli et al. 2017)
Observing Traffic – Methods

- **Kinematic movements** of traffic participants

 - Videos
 - LiDAR

Software: Traffic Intelligence (Saunier et al. 2010)
Observing Traffic – Methods

- Kinematic movements of traffic participants
 - Videos
 - LiDAR

Software: Traffic Intelligence (Saunier et al. 2010)
Observing Traffic – Ground Based LiDAR

WebCam
GNSS Receiver
Ibeo Lux Laser Scanner
SSD Drive
Laptop Power Bank
Raspberry Pi
WiFi Access Point

Dietrich (2018)
Observing Traffic – Ground Based LiDAR
Preliminary Results

• Roughly 20% of yielding vehicles flashed their headlights

• Congestion builds up and dissipates in waves

• Evaluating LiDAR data requires powerful algorithms due to obstructed view and
References

2nd Winter School
Human Factors Aspects of Cooperative Systems Design
Munich, Germany
21.-23. November 2018

Listen to scientific talks of experts in the field of human factors, psychology, automation, and robotics and take part in interactive workshops at our winter school on human factors aspects of cooperative systems design, November 2018 in Munich, Germany

hufaco-2018.ife.mw.tum.de
Thank you