Automated vehicles in mixed traffic environments – the value of external HMI

Anna Schieben Institute of Transportation Systems, DLR e.V.

Knowledge for Tomorrow

DLR.de • Chart 2 > Lecture > Author • Document > Date

AUTOMATED VEHICLES

Deployment of automated vehicles

Automated vehicles in mixed traffic

Integrating automated vehicles in mixed traffic

The interACT project

interACT – Designing cooperative interaction of automated vehicles with other road users in mixed traffic environments

Programme: EU/H2020-ART04 - Safety and end-user road automation in the transition period
Period: May 2017 – April 2020
EU Funding: 5.527.581 €
Coordinator: Anna Schieben, DLR e.V.
Partners: 8 industrial and academic partners from
4 European countries (Germany, Italy, Greece, UK)
EU twinning project: AVIntent (NHTSA)

www.interact-roadautomation.eu

UNIVERSITY OF LEEDS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723395

Deutsches Zentrum für Luft- und Raumfahrt

German Aerospace Cent

Invented for life

DLR.de • Chart 9 > Lecture > Author • Document > Date

OBSERVATIONAL STUDIES

• Observe human-human interactions in current complex urban environments

• Observe human-human interactions in current complex urban environments

• Model the interactions using different approaches:

- Interaction vocabulary: How do Traffic Participants communicate and anticipate intent
- Interaction sequences: What is the general interaction process in specific use cases and scenarios and what are the cultural difference?
- Quantitative models: How can interactions be mathematically formulated to allow model-in-the-loop simulations?

- Observe human-human interactions in current complex urban environments
- Model interaction using different approaches
 - Interaction vocabulary: How do TPs communicate and anticipate intent
 - Interaction sequences: What is the general interaction process in specific use cases, scenarios and scenes?
 - Quantitative models: How can interactions be mathematically formulated to allow model in the loop simulations?
- Develop real-time situation and intention analysis algorithms based on the interaction models

- Observe human-human interactions in current complex urban environments
- Model interaction using different approaches
 - Interaction vocabulary: How do TPs communicate and anticipate intent
 - Interaction sequences: What is the general interaction process in specific use cases, scenarios and scenes?
 - Quantitative models: How can interactions be mathematically formulated to allow model in the loop simulations?
- Develop real-time situation and intention analysis algorithms based on the interaction models

Observe, Model, Predict

Methodology

- 3 Countries: Greece, UK, Germany
- 4 urban use cases

Data assessment

- Videos
- Observation Protocols
- Questionnaires
- LiDAR

nna.Schieben@dlr.de

Preliminary Results – Manual Observation

- Over 100 Protocols per use case and country
- Also: combined 100+ hours of videos, 20+ hours of LiDAR Data and 150+ people interviewed

"Interaction Sequence" - Intersection – pedestrian goes first:

*at times there is no complete stop but rather a continuation of the movement at a very slow pace

**in some cases there was no hand waiving and the scenario played out comparably

Overall findings

- The occurrence and necessity of interactions depends on the situation and a variety of **other factors**, such as traffic density, time of day and specific traffic conditions
- Explicit communication (e.g. gesturing, flashing lights etc.) happens rarely most potential interaction-demanding situations are resolved before they actually arise, mostly by adjusting *kinematic motion*
- Cooperation, communication and thus interaction between human road users takes place at low speeds, usually below 20 km/h
- At higher speeds, conflict avoidance is predominant pedestrians use large enough inter-vehicle gaps to cross without expecting the second vehicle to adapt

DLR.de • Chart 23 > Lecture > Author • Document > Date

HMI DESIGN

Design considerations for automated vehicles

Design considerations for automated vehicles

Design considerations for automated vehicles

Which information could be needed by other road users?

- Category A: Vehicle driving mode
 - Automated or manually driven vehicle
- Category B: Vehicle's next manoeuvres
 - E.g. Vehicle will start moving
- Category C: Perception of environment
 - E.g. pedestrian is detected
- Category D: Cooperation capability
 - E.g. Vehicle willing to cooperate, gives right of way

Cited from *Schieben, Wilbrink, Kettwich, Madigan, Louw & Merat* (2018): Designing the interaction of automated vehicles with other traffic participants: Design considerations based on human needs and expectations. Cognition, Technology and Work. pp 1-17. <u>https://doi.org/10.1007/s10111-018-0521-z</u>

Design of infrastructure

• Seperated tracks, signs

nna.Schieben@dlr.de

Design of infrastructure

- Seperated tracks, signs
 Design of vehicle shape
 - E.g. Google car

nna.Schieben@dlr.de

Design of infrastructure

- Separated tracks, signs
 Design of vehicle shape
- e.g. Google car
 Design of vehicle movements

na.Schieben@dlr.de

• e.g. approaching behaviour

Design of infrastructure

- Separated tracks, signs
 Design of vehicle shape
- e.g. Google car
 Design of vehicle movements
- e.g. approaching behaviour **Design of external HMI**
 - Visual, acoustic signals

na.Schieben@dlr.de

Design of infrastructure

- Separated tracks, signs **Design of vehicle shape**
- e.g. Google car

Design of vehicle movements

- e.g. approaching behaviour
 Design of external HMI
 - Visual, acoustic signals

na.Schieben@dlr.de

Interaction strategies: Perception-signalling design

Interaction strategies: Intention-signalling design

DLR.de • Chart 34 > Lecture > Author • Document > Date

CONCLUSIONS

- The use of "external Human Machine Interfaces" is seems to be especially relevant in ambiguous situations, when explicit communication is necessary above and beyond kinematic cues
- BUT Unlike manually driven vehicles, in addition to adapting their movement, perhaps Automated Vehicles could enhance acceptance, safety and traffic flow by communicating to other traffic participants earlier.

Thank you for your kind attention!

Anna Schieben Anna.Schieben@dlr.de

Project info: <u>www.interact-roadautomation.eu</u>

Webinar: <u>https://www.interact-</u> roadautomation.eu/cad-webinarseries-ix-interact-project/

Knowledge for Tomorrow