Needs of Pedestrians Interacting with Automated Vehicles

Ruth Madigan
Acknowledgements

University of Leeds: Natasha Merat, Tyron Louw

DLR German Aerospace: Marc Dziennus, Anna Schieben

La Rochelle: Tatiana Graindorge, Matthieu Graindorge, Erik Ortega, Nicolas Malhéné

Lausanne: Anne Koymans Mellano, Philippe Vollichard

Trikala: Evangelia Portouli, Giannis Karaseitanidis, Xristina Karaberí,
No ‘Drivers’ in the Vehicle

- No more eye-contact
- No more gestures
- Not about obstacle avoidance/detection, but about **COMMUNICATION & mutual** intention recognition
Automated/Autonomous/Driverless/Self-driving

Shaping the future of autonomous transport
CityMobil2

• Large-scale demonstration of Automated Road Transport Systems (ARTS) in a number of cities across Europe
• Public transport
• No driver/operator
• Low speed (up to 45 km/h)
• Simultaneous Localisation and Mapping (SLAM)
• Shared space
• First mile/last mile solution to complement other public transport options
Demo Vehicles
Interviews, Focus Groups, on-site surveys & video analysis

(N = 24)

(N = 20)

(N = 349)
La Rochelle = 204
Lausanne = 145
Questionnaire Study

- 42 questions
 - 8-10 minute completion time

- Demographics & travel patterns

- Interaction & communication requirements (Merat et al., 2017)

- Unified Theory of Acceptance and Use of Technology (Madigan et al., 2016)
Trial Locations

La Rochelle, France:
- November 2014 to April 2015
- Route 1.7km including 7 station stops
- Mainly operating in shared space
- 204 participants

Lausanne, Switzerland
- April to August 2015
- Route 1.6km including 6 station stops
- 145 participants
- Mainly operating on EPFL campus

Trikala, Greece
- September 2015 to February 2016
- Route 2.5km including 8 station stops
- 315 participants
- Mainly operating in dedicated lane
Key Questions

- How do cyclists and pedestrians feel (safety/priority) about the ARTS?

- What information do cyclists & pedestrians require from the ARTS?
Safety and Priority?

Images from La Rochelle
Do you feel more safe?

- Road Marking ($F(1,659) = 5.26$, $p<0.05$, $\eta^2 = 0.08$)
- Location ($F(2,659) = 2.493$, $p<0.05$, $\eta^2 = 0.01$)
- Road Markings & Location ($F(2,659) = 6.27$, $p<0.01$, $\eta^2 = 0.02$)
Who has priority?
What information?

ARTS Behaviour (5 point likert scale)

- Whether it is stopping?
- Whether it is turning?
- How fast is it going?
- Whether it is going to start moving?
- Whether it has detected me?

Overall Results

- Most important: has it detected me?
- Least important: speed of travel
- No effects of Road Markings
How would you like to receive this information?

- Visual (lights)
- Visual (words)
- Auditory (tones/signals)
- Auditory (words)
Whether it is turning

Whether it is going to start moving

Whether it has detected me

How fast it is going

Whether it is stopping

Visual (Text)

Visual (Lights)

Auditory (Spoken word)

Auditory (Signal)
Whether it is turning

Whether it is going to start moving

Whether it is stopping

Whether it has detected me

How fast it is going

Visual (Text)
Visual (Lights)
Auditory (Spoken word)
Auditory (Signal)
Focus Group: La Rochelle

Priority

• Direction of travel not obvious
• Not sure who had priority
• Would prefer demarcations
• Not sure if the vehicle can identify hazards?
• Suggested use of horns and lights for detection and communication
Other Focus Group comments

- **Visibility**: Colour maybe too discrete, brighter colour to make it easy to see. In La Rochelle yellow would be more suitable to fit in with other public transport modes.

- **Sound**: Lack of engine noise a problem for its localisation, especially for the visually impaired.

- **Speed**: Too slow, but probably ok in shared space.

- Better for **tourists** than commuters.
Summary & Conclusions

• As the deployment of automated vehicles become commonplace, the views of other road users should be sought

• In particular, understanding how VRUs (and other vehicles) interact and communicate with a ‘driverless’ vehicle is important

• This study shows that VRUs definitely want some information and (at the moment) prefer the ARTS to be in a dedicated space.

• They assume they have priority in a shared space
Issues to consider...

• Ability to see/hear/understand messages & stimuli

• Global understanding (international standards) of messages used

• Two-way communication vs. uni-directional

• Role/responsibility of the ‘driver’
Next Steps........
Designing cooperative interaction of automated vehicles with other road users in mixed traffic environments
Situation today

- On-board driver
- Other traffic participants

Future situation: Automated vehicles in mixed traffic environments

- Vehicle automation
- On-board user
- Other traffic participants
Questions?