

Empirical game theory of pedestrian interaction for autonomous vehicles

Authors:

Fanta Camara, Richard Romano, Gustav Markkula, Ruth Madigan, Natasha Merat and Charles W. Fox

Institute for Transport Studies, University of Leeds, UK

Measuring Behavior 2018

Outline

- I. Motivations & Introduction
- **II.** Game Theory Model
- **III. Results**
- **IV.** Conclusion & Future work

Fanta Camara Measuring Behavior 2018

Motivations

A "Barnes dance" or "scramble" crossing between Hollywood and Highland, Los Angeles. Real-world pedestrian-pedestrian interactions

Fanta Camara Measuring Behavior 2018

Motivations: EU H2020 InterACT project

Motivations: EU H2020 InterACT project

Partners

Fanta Camara Measuring Behavior 2018

Introduction

Trials of an autonomous vehicle : La Rochelle (France) and Trikala (Greece)

citymobil2.eu

Conclusion (Madigan et al.): **pedestrians intentionally obstruct the way of the autonomous vehicle once every 3 hours**

Fanta Camara Measuring Behavior 2018

The Big Problem With Self-Driving Cars Is People

Rodney Brooks, Rethink Robotics

Video: CityMobil2

Fanta Camara Measuring Behavior 2018

Game theoretic approach: chicken game

• 2 vehicles negotiating for priority at an unmarked intersection

2 possible actions :

- Drive straight => winner
- Swerve away => loser

But if a collision occurs => both bigger losers

$Y \setminus X$	ax=swerve	a _X =straight
a _Y = swerve	(0,0)	(-1, +1)
$a_Y = straight$	(+1, -1)	(-100,-100)

Payoff matrix

Davoff matrix

Manchester, 06/06/2018

Scenario of the chicken game

Why game theory ?

Framework to model conflict and cooperation between rational decision-makers

Fanta Camara Measuring Behavior 2018

Method : Sequential Chicken Model

Assumption: Both players make their action selection simultaneously

ı

Scenario of chicken game

Discrete space, time and speed Symmetric Utilities

- Collision utility: e.g. -100
- Time delay utility: e.g. 1

Sequential chicken game = a sequence of one-shot games

Payoffs of sub-games at state (y > 1, x > 1, t) becomes recursive of function of the next steps $(y - a_Y, x - a_X, t + 1)$ where $a_Y, a_X \in \{1, 2\}$

Considering the value $v_{y,x,t} = (v_{y,x,t}^Y, v_{y,x,t}^X)$ at state (y, x, t) the sub-game's payoff is then given by:

$$v_{y,x,t} = v\left(\begin{bmatrix} v(y-1,x-1,t+1) & v(y-1,x-2,t+1) \\ v(y-2,x-1,t+1) & v(y-2,x-2,t+1) \end{bmatrix}\right)$$

Fanta Camara Measuring Behavior 2018

(Nash) Equilibrium

- Fundamental concept of game theory by John Nash in 1950
- *Equilibrium*: pair of strategies for the two players such that if either player knew the other's they wouldn't change their own
- What if there are **multiple** *equilibria* such as in the chicken game ?

$Y \setminus X$	a _X =swerve	$a_X = straight$
ay=swerve	(0,0)	(-1, +1)
$a_Y = straight$	(+1, -1)	(-100,-100)

Payoff matrix

- Discard dominated equilibria
- Discard non-Evolutionary Stable Strategy (ESS) equilibria

and

General rule: set a certain probability to each equilibrium => a *mixed* strategy

Fanta Camara Measuring Behavior 2018

Results of the Sequential Chicken Model

Figures from Fox et al. (VEHITS, 2018)

Fanta Camara Measuring Behavior 2018

Experiments

16 participants (22 to 48 years old) divided in 8 groups of 2 played:

- Natural game: 3 times
- Chocolate games: 3 times with chocolate rewards

$$P(D \mid \theta, M') = \prod_{game \ turn} \prod_{(1-s) P(d_Y^{game,turn} \mid y, x, \theta, M) P(d_X^{game,turn} \mid y, x, \theta, M) + s(\frac{1}{2})].$$

Scenario of chicken game

Results

Type of Game	Number of Games	Collisions	Average Delay (box)	Average Time Delay (s)
Natural	24	5	$\frac{26}{19} \approx 1.368$	$\frac{26}{19*2} \approx 0.684$
Chocolate	24	8	$\frac{18}{16} = 1.125$	$\frac{18}{16*2} = 0.5625$
Total	48	13	$\frac{44}{35} \approx 1.257$	$\frac{44}{35*2} \approx 0.628$

Fanta Camara Measuring Behavior 2018

 $\|\mathbb{T}\|$

Fanta Camara Measuring Behavior 2018

Conclusion

- Sequential Chicken game theory model, for interaction between an AV and other road user
- (e.g pedestrian)
- Small probability for a collision to occur as a threat
- Owning a big car is a rational decision (other cars get out of the away)
- Experiment with human participants: preference for saving time than avoiding collision

Future work

- Continuous version of the model
- Giving and reading utility signals between the agents
- Fit parameters to human-human interactions using other techniques, video tracking data etc.
- Use of new (visual or audio) signaling conventions

Fanta Camara Measuring Behavior 2018

Thank you for your attention !

Any questions ?

Fanta Camara Institute for Transport Studies (ITS) University of Leeds Contact: tsfc@leeds.ac.uk

Fanta Camara Measuring Behavior 2018